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Implicit compact finite difference schemes for the Euler equations are described which 
furnish equivalent treatment of the conservation and nonconservation forms; a simple 
modification yields an entropy-producing scheme. An extension of the scheme also treats the 
compressible Navier-Stokes equations; when the viscosity and heat conduction coefftcients 
are negligible only the boundary data appropriate to the Euler equation influence the solution 
to any significant extent, a result consistent with singular perturbation theory. 

This paper discusses a class of compact finite difference schemes for the Euler and 
Navier-Stokes equations. These schemes are closely related to schemes described by 
Philips and Rose [4] and are developed here with specific reference to hydrodynamics 
in order to treat important details which are not immediately evident in a more 
genera1 mathematical setting. However, solution methods which are described in [4] 
also apply to the schemes considered here and, where appropriate, we refer the reader 
to that paper for further details. 

The paper is divided into two essentially separate but, nevertheless, closely related 
parts. Part I treats the Euler equations and shows the forma1 equivalence between 
solutions of the conservation and nonconservation forms of a compact finite 
difference scheme which arises from a consistent use of the product rule for 
differences. A slight modification yields an entropy-producing scheme. Part II extends 
the scheme to the Navier-Stokes equations, our principle objective being to 
demonstrate that, as the coefftcients of viscosity and heat conduction vanish, only the 
boundary conditions for the associated Euler problem influence the solution, a result 
consistent, therefore, with singular perturbation arguments. 
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PART I 

1. INTRODUCTION 

Smooth solutions of systems of hyperbolic equations in the conservation form 

U,+F,(u)=O (1-l) 

also satisfy 

u,+A(u)U,=0, (1.2) 

where A = grad F. Equation (1.1) also permits weak solutions, i.e., solutions which 
are smooth except along certain curves x=x(t) across which 

[U]i-[F]=O, (1.3) 

where [ ] indicates the jump in value across x=x(t). Generally, solutions satisfying 
(1.3) are not uniquely determined; for problems of physical interest a unique solution 
can be determined by the requirement that an entropy condition also be satisfied 
across the discontinuity. Such a solution may also be characterized as the weak limit 
of smooth solutions of 

as v + 0. 
In applications to inviscid fluid dynamics (1.1) are the Euler equations which 

express the conservation of mass, momentum, and energy; if x =x(t) is a shock 
discontinuity, (1.3) expresses the Rankine-Hugoniot conditions. Equation (1.4) is a 
model of the Navier-Stokes equations for which (1.1) is the inviscid singular pertur- 
bation limit (v + 0). 

These observations play an important role in computational fluid dynamics. The 
artificial viscosity method of von Neumann and Richtmyer [5] is based upon a 
variant of (1.4) and has been a widely employed shock-capturing finite difference 
technique. The work of Lax [2] and others has emphasized the fact that certain finite 
difference schemes having the conservation property expressed by (1.1) also converge 
to the physically relevant discontinuous solution of (1.1). For one-dimensional 
problems such conservation-preserving difference schemes have proved to be more 
effective than artificial viscosity methods in reducing the spread of the numerical 
solution at discontinuities. In higher dimensions no completely satisfactory methods 
for shock capturing are yet available. 

In a recent study of a class of implicit compact finite difference schemes (Philips 
and Rose [4]) a Riemann problem was treated with reasonable accuracy in spite of 
the that the scheme was, formally, nonconservative. Part I of this paper clarifies this 



422 MILTON E. ROSE 

result. We are able to show by purely formal arguments that when a leapfrog scheme 
is used to express the conservation form of the Euler equations certain natural 
auxiliary conditions transform the system to an equivalent nonconservative form. We 
are also able to describe a modification of the scheme which is entropy-producing 
(i.e., physically dissipative). 

2. THE EULER EQUATIONS 

The Euler equations in one dimension may be decribed as follows: define 

Equations expressing conservation of mass, momentum, and energy in a domain R in 
the (x, t) plane are given by 

tip=o, 

++a,p=o, 
ripE + a,(pu) = 0, 

(2.2) 

in which p = density, u = velocity, E = total specific energy, and p = pressure. If 
e = specific internal energy, then E = u2/2 + e and p = (y - l)pe, the latter 
expressing the equation of state of a perfect gas with gas constant y. 

Consider smooth solutions of (2.2); since 6p = 0, then dp# = pD,#, and (2.2) may 
be transformed to the nonservation form 

Bp=o, 

pD,u+a,p=o, 

pD,E+pa,u+ua,p=o. 

(2.3) 

If use is made of the momentum equation and the relationship iD,u2 = uDtu, the 
energy equation in (2.3) can be expressed in the form 

pD,e +pa,u = 0. 

Next, employ the first law of thermodynamics in the form 

de = Tds -pdp-‘, (2.4) 

where s = entropy and T = temperature to obtain 

pD,e +pa,u =pTD,s. (2.5 1 
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Thus, for smooth nonviscous flows the energy equation is equivalent to (2.6) 

D,s = 0. (2.6) 

3. A COMPACT FINITE DIFFERENCE SCHEME 

The equivalence of (2.2) and (2.3) depends upon the product rule for differentiation 

for smooth functions. A similar product rule holds for difference operators and it is 
reasonable to examine the formal consequences of employing the rule in finite 
difference equations. 

In order to do so let 6,, 6, denote central divided difference operators and ,u,, pu, 
central averaging operators on a mesh whose characteristic length is h. The product 
rule for differences is S(&) = (~4) 6~ + (BV/) 84. 

Define 

Immediate consequences are 

LEMMA 1. If 

01,P>olxU) = P,@U)9 d”p = 0, 

then 

fih@4) = CU~PP:~J + 01x9 -cl,@ 44~~). 

LEMMA 2. rf 
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Next, partition the fundamental domain 0 by cells {n; ) to obtain Q,; a typical cell 
is shown in Fig. 1. Corresponding to (2.2) consider the leapfrog scheme 

tihp = 0, 

dh@u)+6,p=0, 

bh(pE) + 6,(pu) = 0. 

(3.4) 

The conservation property of (3.4) is expressed by the fact that if any of these 
equations is summed over any set of contiguous cells of R,, there remains only 
contributions arising from the boundary of the subdomain. These equations express 
three algebraic relationships between the 12 values of p, U, and E at the center points 
of the sides of the cell a:. A mixed initial boundary value problem for a cell may be 
posed in which p, U, E are jointly prescribed at (xi, t, _ ,,*) and, individually, at either 
boundary side (xi* ,,*, t,). In order to algebraically determine p, U, E at (xi, t,, ,,& 
Eqs. (3.4) must be supplemented by three further conditions. 

In view of Lemma 1, if the conditions 

are adjoined to (3.4), a solution will also satisfy 

LPp = 0, 

Cj+p)D:u+&p=O, 

0~) D:E + ol,~) 4-u + Cuxu) 6, P = 0, 

which may be compared to (2.3). 
From Lemma 2, 

./2,t,) 

(3.6) 

FIG. 1. Points associated with the sides of a computational cell nl. 
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so that use of the momentum equation as expressed by the second equation in (3.6) 
yields the energy equation in the form 

@,p>Dfe+ cU,P)4u=O. (3.7) 

Referring to (2.4) the lirst law of thermodynamics may be written in the form 

D:e=T,,D:s-&p)D,p-‘, (3.8) 

in which T,, is a temperature value interior to the cell ~1. From Lemma 1, as well as 
the detinition of dh, we have 

dh@p-‘) = 6,~ = (jt,p) D;p-‘. 

Then (3.8) yields 

b,P) @‘e + 01, P) &u = kP) Tt,D:s, 

so that, in view of (3.7), 

WV 

D:s = 0. (3.10) 

These results are summarized in 

THEOREM 1. If a mixed initial boundary value problem for (3.4) is solvable in a 
cell a: with the auxiliary conditions (3.5) the solution also satisfies (3.6) in which the 
conservation of energy equation can also be expressed by (3.7). Conversely, the 
solution of the problem formulated for (3.6) also satisJies (3.4). In either problem, 
D;s = 0. 

It is plausible to expect that the equivalence expressed by Theorem 1 also will 
extend to the system of algebraic equations which results by treating a mixed initial 
boundary value problem on the computational domain a, which is composed of cells 
(7~1 }. However, both the existence of a solution and its convergence as h --t 0 can only 
be expected to result when the formulation of the boundary conditions is consistent 
with inflow and outflow conditions which arise from the theory of characteristics of 
the differential equation (2.2) or (2.3). We shall not discuss this question here. 

In the following section we shall describe a simple means of modifying the 
auxiliary conditions (3.5) so as to result in the entropy condition D:s > 0. 

4. AN ENTROPY-PRODUCING SCHEME 

When, instead of the auxiliary conditions (3.5), only the conditions 

cu,Px.4~) = &@~X 

cl,U =I&& 
(4.1) 
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are adjoined to (3.4) the application of Lemma 1 results in 

dhp = 0, 

cU:p) D, u + 6, P = 0, (4.2) 

CP,P) D:E + &CPU) = Or,E -POE) W4 

instead of (3.6). Previous arguments show that the last equation may be replaced by 

@,P) T,D:s = CutE -/CA 6,@u). (4.3) 

Hence the condition 

will result in 

pc E = ,u,E t @@u), a > 0, (4.4 1 

Dfs > 0, 

and thus will yield an entropy-producing scheme when combined with (4.1). 
In the application of this theory a simplified approximation to conditions (3.5) or 

to (4.1) and (4.4) is useful. We have 

Hence, if the divided difference quotients involved remain bounded as h --t 0, 

Pu(W = WMW) + OV2). 

If ,u, u = ,u, U, an application of this lemma shows that 

p(z2) = (au)’ t O(h2), 

so that 

Also. 

Ol,E -PA = Cute -iu,e) + OV*). 

cutPx&~) -Pm) = C.&P - P*PNk~) -I- O(h2). 

Then, to terms of order h*, condition (4.1) may be approximated by 
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and condition (4.4) by 
pUr e = p, e + 06,@u). (4.6) 

With these approximations the argument which allowed the energy equation in 

bhp = 0, 

cu,PP:u+~,P=o, 
CPA 0: e + Cu, PM, 4 = +UP~))~ 

= (u,p) Th D; s > 0. 

(4.7) 

In order to avoid having the O(h’) approximations used in (4.5 
the entropy condition Df s > 0 we may take 

o=o,h+O(h2). 

) and (4.6 ) destroy 

(4.8) 

We summarize these results in 

(3.6) to be expressed in terms of e by (3.7) also yields (4.2) in the form 

THEOREM 2. Under the auxiliary conditions (4.1) and (4.4) the leapfrog scheme 
(3.4) is entropy producing and is equivalent to (4.2). This equivalence is preserved to 
terms of second order in h when (4.1) and (4.4) are replaced by (4.5) and (4.6) and 
when (4.2) is replaced by (4.7). 

The leapfrog scheme (3.4) expresses, to terms of second order in Ax and At, the 
integral form of the differential equations (2.2) in a cell r$’ when the values occurring 
in (3.4) are interpreted as average values along the sides of the cell. If we regard as 
equivalent any two solutions of the differential equations (2.2) in a cell which have 
the same average values of their initial and boundary data, then any equivalent 
solutions of (2.2) will satisfy (3.4) to the same degree of approximation. This 
equivalence class includes solutions of (2.2) which have discontinuities interior to 7~1. 
It is not difticult to conclude that if a solution of (3.4), (4.1), and (4.4) converges in 
Q, for h + 0 in the sense of bounded Ly convergence then the solution will also 
satisfy the integral form of (2.2) on every subdomain of s1 and moreover, will lead to 
a weak form of the entropy inequality D,s > 0. 

The discussion in Part I has established the equivalent treatment of conservation 
and nonconservation forms of the Euler equations by compact finite difference 
schemes. A discussion of numerical methods for treating such schemes has been given 
by Philips and Rose [4]. Although the scheme employed in that paper differs from 
the scheme described here in the manner in which dissipation is introduced, the 
difference is slight and their numerical results for a Riemann problem also serve to 
validate the methods described here. 

We ask the reader to verify that no essential change in our treatment of the one- 
dimensional case is required in order to extend our argument to higher space 
dimensions. 
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PART II 

1 .INTRODU~TION 

The Euler equations arise as the formal singular perturbation limit of the 
Navier-Stokes equations as the coefficients of viscosity and heat conduction vanish 
and it may be conjectured that the class of correct mathematical boundary conditions 
for the Euler equations are determined by the “outer expansions” of the 
Navier-Stokes equations in the sense of singular perturbation theory. A simple 
energy argument suggests that the Navier-Stokes equations are well posed under 
boundary conditions which are independent of the Mach number (Problem P). In 
contrast, the theory of characteristics for hyperbolic equations shows that the number 
of boundary conditions for the Euler equations depends upon the Mach number and 
is, generally, less than the number of boundary conditions which are appropriate for 
the Navier-Stokes equations. This reduction in the number of boundary conditions is 
a characteristic feature of singular perturbation problems. 

Motivated by Part I we here describe a compact finite difference scheme for 
treating the compressible Navier-Stokes equations. A study of the resulting tinite- 
difference scheme (3.9) shows that only the Euler boundary conditions have an 
appreciable effect on the solution as the viscosity and heat conduction coefficients 
vanish. As a result the difference scheme (3.9) provides for a treatment of both 
problems under boundary conditions which are independent of the Mach number. 
This can be important in practical problems where characteristics may not be known 
a priori. 

~.THE NAVIER-STOKES EQUATIONS 

Let k, ,u, 1, c,, c, denote the coefficient of heat conduction, the shear and second 
coefficients of viscosity, and the specific heats at constant volume and pressure, 
respectively. If R = cp - c, so that y = c,,/c,, , the equation of state in terms of the 
temperature T may be written p = RpT. 

In terms of the operator fi defined in Part I (Eq. (2.1)) the conservation form of 
the Navier-Stokes equations is given as 

&u + grad p = div n’, 

bpE + div( pu) = div(un’) - div h, 

(2-l) 

in which 7~’ is the reduced stress tensor 

72’ E 2~~4, + ;I div u P1($ + u,> 
El@, + ux) 2,uv, + A div u (2.2) 



D,u + R grad T+p-‘RTgradp =p-’ div II’, 

D,T+(y- l)Tdivu=@c,)-‘(n’gradu-divh). 

If 

f = 71’ grad u, 

it is not difftcult to verify that 
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and h is the heat flux given as 

h = -k grad T. (2.3) 

The relationship between the operators D and D, described in Part I may be used 
to transform (2.1) to the nonconservation form 

dp=o, 

(2.4) 

(2.5) 

f=,u@c,)-’ [u: + vz + 2(u, + v,)* + I(div u)‘] (2.6) 

is nonnegative. Hence, using (2.3), the energy equation in (2.4) assumes the form 

D,T+(y-l)Tdivu=k@c,)-‘divgradT+J (2.7) 

Using the thermodynamic relationship given by (2.4) in Part I it is a simple exercise 
to verify that the second law of thermodynamics holds in the form 

pD,s + div( T- ’ h) > 0. (2.8) 

Equations (2.4) and (2.7) may then be expressed in the form 

U, + AU, + BUY = CU,, + 2DU,, + EU,,,v + F, (2.9) 

where the transpose of U is @, u, v, T) and 

A= 

B= 

u I 
I P 0 0 

------______-------_--- 

RT/p i 0 R 

O I 
: 0 

0 I O-l)T tf u 

v I 0 
I P 0 

----------------------- 

0 I 0 0 

RTIp I t; R 

01 0 (y-‘1)T v 

I A aI1 , 12 
-------_ 

A,, ; 4422 

b 11 ’ B,2 
---- I--- 

B,, ; B,, 
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c=pp-’ I 0 
OI ; 2 + UP 0 

O 1 
01 0 0 

0; 0 0 

L&g i ________---------- 0 ~ 0 1 + UP 
O 1 VP 0 I + 
01 0 0 

/o ' 0 0 
_--------__------- 

i 

E=ppp-' t 0 I 1 0 
0; 0 2 + VP 
OI O 0 

F= 7 

0 
--- 

0 
0 

YIP, 

in which P, = ,uc,/k is the Prandtl number. 
It will be convenient to introduce the matrix 

J = diag(O, 1, 1, l), 

and to write Eqs. (2.9) in system form as 

U,+AU,+BU,=J(V,+ W,,+F), 

CU, + DU,, = JV, 

DU, f EU, = JW. 

(2.10) 

(2.11) 

(2.12) 

Because the elliptic operator on the right-hand side of Eq. (2.9) has rank 3, it is not 
immediately apparent how boundary conditions may be imposed. To this end, 
consider the one-dimensional problem 

U,+AU,=CU,,, (2.13) 
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where A is symmetric, and constant, 

and a,, > 0 while 

431 

is nonnegative. With initial and boundary conditions given by 

U(x, 0) = v, (2.14a) 

U(0, t) = 0, (2.14b) 

JU( 1, t) = 0, (2.14c) 

if (2.13) is multiplied by Ur and then integrated the result is the “energy” expression 

O=+fjlUTUdx+f U;CL$dx + U’ 
0 0 

Employing the initial and boundary conditions (2.14) and noting that a,, > 0 by 
assumption, there results 

I 
I 

U’(x, t) U(x, t) dx < ’ t?‘(x) o(x) dx, 
0 I 0 

(2.15) 

where the equality applies if and only if U, = const. This, of course, implies the 
uniqueness of the solution for the linear problem considered. 

Were this argument applicable to the hydrodynamic problem (2.9) we would have 
a - u in which case the boundary conditions (2.14b) and (2.14~) would correspond II - 
to inflow and outflow conditions. We thus state 

PROBLEM P. Solve the Navier-Stokes equations in form (2.12) in a domain 0 
under the initial and boundary conditions 

U(x, Y, 0) = 0, 

U(*, t) = u inflow, (2.16) 

JU(., f) = JU outflow. 

More specifically, we assume Q is the unit square on which inflow conditions apply 
for x = 0 or y = 0 while outflow conditions apply for x = 1 or y = 1. 

A more complete discussion of properly posed boundary conditions for problems 
of this type has been given by Strikwerda [6]. 
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3. A COMPACT FINITE DIFFERENCE SCHEME 

If we ignore for the time being the fact that the term F in (2.9) is a function of U.V 
and U,,, this equation is similar to the type of problem which was treated by Philips 
and Rose [4] by means of a second order accurate compact finite difference scheme. 
However, their argument depended essentially upon the fact that the coefficient 
matrices C, D, E in (2.9) were nonsingular; in order to describe the extension 
necessary when these coefficients are singular (cf. (2.10)) it appears simplest to 
rederive the derivation of the difference equations from elementary principles. This is 
done here. 

We suppose the computational -domain can be subdivided into rectangular 
computational cells llink((X,Y,t):IX-XjI <A~/2,ly-ykl <Ay/2,It-t,,l <At/2). 
Again, write r/i;, = U(jAx, kdy, ndt) and employ the notation 

PX ‘,k = c”;+ II2.k + u;-,,2.k)/2, 

6x u;k = <u;+ 1f2.k - vi”- ,/2,k>b 

etc. When no confusion is likely to arise we suppress the spatial indices by writing 
U” = U(., *, ndr); thus ,uX U”, 6, U”, ,uY U”, 6, U”, pr Cm, 6, U” involve the values of U 
at the center points of the faces of the cell x”. 

The approximation method to be described is based upon the following idea: 
suppose the solution U = U* of (2.12) is known to be smooth, then the result of 
approximating the coefficient matrices in (2.12) by their values averaged over each 
computational cell XI”, say A” = A”(U*), etc., leads to a linear partial differential 
equation in each cell 

U,+A”U,+B”U,=J(V,+ W,+F”), 

C”U,+D”U,=JV, (3.2) 

D”U,+E”U,,=JW. 

This system will approximate (2.11) to terms of second order in the mesh parameters 
if rr” is sufficiently small. Because (3.2) is linear it is feasible to construct a linear 
manifold of solutions in each cell and then, by means of algebraic equations which 
express continuity conditions at the boundaries of neighboring cells together with the 
initial and boundary conditions associated with the problem, determine a specific 
manifold which leads to an approximation to the solution of (2.12). These algebraic 
conditions are expressed by the finite difference equations (3.9) whose development 
we now describe. 

The following discussion concerns (3.2) in a fixed cell II”. With the coefficient 
matrices partitioned as in (2.10) introduce the following: 

DEFINITIONS. I, is the 3 x 3 identity matrix; for a,, # 0, b,, # 0, 
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Kr ; 

( 

-1 
-a,, 12 A 

1 
BE O 

( 

-b,%z 

13 ’ 0 ) I, ’ 

e,? s Ax --WY, 2 

Lqwx) = ( 
1 0 
0 ’ exp wx ) 

[cl-’ ‘k-e (“0 &I). 

Note that the system of differential equations A Y = CY’ has the general solution 
Y(x) = k?(xw,) a, where a is a vector parameter. 

Each of the terms I, (xl - tA), (yZ - tB), &(xw,), &2(yo,) is thus a solution of 
(3.2) when F = 0 so that 

U=a,+(xl-rA)a,+(yl-tB)a, 

+ k?(xw,) a4 + h2( yw,,) a, + fJF, 

describes a solution manifold of (3.2). 
Introduce the definitions 

(3.4) 

q(e) = c0th e- e-1, 

r(e) = e-1 - (sinh 6))’ 

and consider the compact finite difference scheme 

(3.8) 

(6, + Ad, +’ B6,) U” = J(S, I”’ + 6, W” + F”), (3.9a) 

QJn=pxU”=pClyUn, (3.9b) 

(CS, + OS,) U” = (Jp, - (AX/~) Q,d,) I”’ + (Ay/2) R,S, W”, (3.9c) 

(OS, + E6,) U” = (Jp,, - (Ay/2) Q,,d,) w” + (AX/~) R,6, v”, (3.9d) 

in which 

Qx E 
0 
0 

(3.10) 
0 0 0 

R,- 
0 0 D,,r(t?,,) E,’ 

where ox, 6, are defined by (3.3). 
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It is not difficult to verify that the solutions 1, (x1- rA), (~16 tB) of (3.2) with 
F = 0 satisfy (3.9), i.e., the truncation error resulting from these solutions of (3.2) 
vanishes when F = 0. More complex algebraic manipulations are required to verify 
that, as a result of the definitions of Q and R given by (3.10), the truncation error due 
to the solutions &(xo,) and &2(yw,) of (3.2) when F = 0 also vanish. Thus, the 
difference equations (3.9) result in a zero truncation error when applied to the 
solution manifold (3.4). (This argument is simpler than that employed by Philips and 
Rose [4] and helps illuminate the role of the matrices Q and R in (3.9) in reducing 
the truncation error on the solution manifold.) 

For real values of 0 the functions q(e) and r(0) given by (3.8) are regular in 8 and 
are conveniently evaluated by 

q(O) % e/3, 

= sgn 8, 
e small, 

8 large, 
(3.1 la) 

where sgn 8 = e/l 01, also 

r(e) 2: e/6, 
z e-l, 

6 small, 

8 large. 
(3.1 lb) 

The matrices 0,, 0, given by (3.3) are generalizations of the cell Reynolds number. 
Consider 0, : if S is the matrix which diagonalizes 0,, say S- ‘0, S = &IX,, then 

de,) = sd..) s - 1, 
r(B,) = Sr(OJ S-‘, 

(3.12) 

and the approximations given in (3.11) may be used to evaluate q(&J, r-(6,). 
As mentioned earlier, the difference equations (3.9) generalize similar equations 

which were described by Philips and Rose [4] when the matrices C, D, and E were 
nonsingular. Arguments given there may be used to show that the truncation error in 
(3.9) is second order in the mesh parameters independent of f3,, t9,,. 

The reader is asked to verify the fact that the algebraic equations expressed by 
(3.9) together with (2.9) lead to a determined system of equations for U”, V”, and 
W”. When the coefftcient matrices in (3.9) are symmetric and constant an energy- 
norm estimate for the solution may be given (cf. [4]); in that case the existence and 
uniqueness of the solution and also the convergence of the scheme for any fixed 
values of the mesh parameters L, = At/Ax, A,, = At/Ay results. It is plausible that 
similar results hold when the coefficient matrices in (3.9) are variable and we appeal 
to this plausibility argument in the next discussion without explicit comment. 
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4. SOLUTIONMETHODS 

(a) As described in [4], compact schemes of type (3.9) may be solved by a 

Two-Step Method 

(i) By eliminating the value Unf”2 common to (3.9a) and (3.9b) there results, 
with T = At/2, 

where 

(4.1) 

(4.2) 

The solution of (4.2) is determined by Un-“2 and the imposed boundary 
conditions for U”. A formal AD1 solution of (4.1), accurate to O(T’), is given by 

(4.3) 

=.y”,‘(&T&,?;‘) [ ( un,“2) +Tt-“1. 

(ii) Using the solution U”, V”, W” obtained from (4.1) CJ”+ ‘I* may be 
calculated from either the “leapfrog” equation (3.9a) or (3.9b). 

In employing (4.1) the coefficient matrices are assumed to be evaluated at the 
center point of the cell rr” by spatial averages in the cell. We shall not pause to 
indicate how this may be approximated in the solution algorithm. 

A drawback in employing (4.3) to solve (4.1) is that At must be suitably restricted; 
when the viscosity p in (2.3) is sufficiently small this restriction is approximated by 
the CFL condition for the dominant hyperbolic part of the operator in (2.2). 

58'/49/3-6 
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Presumably, in view of earlier remarks, (4.1) is solvable for any value of the ratio of 
mesh parameters A,, 1,. In order to exploit this, particularly for the calculation of 
steady-state solutions of (3.9), a more effective solution method than (4.3) is required. 
This topic will not be treated here. 

We remark, finally, that the existence of the unique solution of the algebraic 
equations (4.1) is a consequence of the (assumed) existence and uniqueness of the 
finite difference equations (3.9). 

(b) The operators YX, 3, in (4.3) involve the solution of algebraic two-point 
boundary value problems which can be obtained by a method due to Keller [ 11. A 
simpler solution method results by observing that U” may be obtained directly by 
solving a block tridiagonal system of equations (cf. [3]) as will now be shown. The 
asymptotic consequences when ,D -+ 0 will be described in Section 6. 

The solution of the one-dimensional example 

typifies the problem involved in applying (4.3), where S, is given by (4.2). In a cell 
$’ the first equation in this system can be written 

J’&. + r‘46,) u = J’g,, 

where J’ = Z -J. The remaining equations can be solved for the values V;+ ,,2 with 
the result 

1, Vi”+ I/2 = J@i’ uj’, ,,2 + bf U;_ ,,z - si’), 

A, V;- 112 = Jb; U;, l/z + b, U;- ,,2 + gi), 
(4.5) 

in which 

and 

As = At/Ax, K, = Zilx/Ax, 

a* =~[(Q,~Z>(Z+~,A)+K,C], 

b* =f[(Q,kZ)(Z-L/I)-ic,C], 

g* = [V f Q,>g, f kc gzl. 

(4.6) 

The pair of values UJ’+ ,,?, Vy+ ,,2 are common to the contiguous cells II/“, $+, . 
Expressions for the value Vy+,,2 in each such cell are given by (4.5); the result of 
equating these expressions for Vy+ ,,2 and setting I =j + 4 is 

-JUG 1l2 U~+,+b:_,,zUI;-,+(~:-,,,-Jb,,,,)U~=g:_,,z+Jg,,,,. (4.7) 

This block-tridiagonal system of equations may be efficiently solved for U” with the 
boundary conditions prescribed by (2.9) and the values V” can then be obtained from 
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(4.5). However, in order to evaluate the coefficient matrices a *, b* an effective 
means of approximating the matrix Q, defined by (3.10) must be considered. This 
topic, with specific reference to the Navier-Stokes equations (2.2) is the subject of the 
next section. 

~.THE MATRICES Q AND R 

The matrix Q, occurring in the coefficients a, b in (4.6) was defined in terms of A 
and C by (3.10) in terms of the matrix 4(8,), which itself was defined by (3.3) and 
(3.8). The matrix QY is similarly defined in terms of the matrices B and E. 

Confining our attention to Q,, first note that Q, is given, using (3.3), by 

(5.1) 

in which 
6 = (2 + l/p)-‘, 

(5.2) 

& = P,/y. 

Denote the eigenvalues of (2,~/pdx) 0, by 8,,, , OX,*, 0X,3. If 

0 = E/B, 

then 
e,,, = U, 

and B,,2, ex,3 are given as 

(5.3) 

(5.4) 

20, I A= l+a- 
us ( 

-$ + (-1)/M-’ 
1 

[ ( l 1 2 

1 
l/2 

x M2 (l+a)- 
-qF 

+ 4u(l -MI) ) I= 2, 3, (5.5) 

where M = u/c, c2 = yRT. The following approximations result when u # 0: 

M=l 

+2 (l+L)>O, 

20, 3 A= 0. 
US 

(5.6) 
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M small 

M large 

Writing 

then 

where 

20, 2 A-1+u>o, 
us - 

28x.3 
--&=(1+0)--&O. 

S= 

t 

0 s2 s3 

1 0 0 

0 1 1 

in which 
(e&L, - EU) 

“= e(y- 1)T’ 
v=2,3. 

As a result, using (3.12) 

de,) = fwkw~u) 0 s -‘v 

in which q((&lx/2~) OX) may be approximated by using (3.8). 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 
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In view of (5.6)-(5.8), 

1 0 0 

l$q(8,)=S ii sgnu 0 1 0 11 s-l, + 
0 0 r, 

where 

r,=- 1, M,< 1 

= 0, M,=O 

II 1. M,> 1, 

where M, = u/c. 
Thus, 

Q,= (” 
0 

0 C,,S [diagW,,A dex,2h s(e,,J)l S-‘C22 

and 

0 
irnO Q, = 

( 

0 
0 C,,S[diag(l, 1, c,)] S-’ sgn uC;~’ 

Similar expressions result for Q,, noting (3.10). 
In the same manner, using (3.8) and (3.10), 

0 0 
RX= 0 D,,S[diag(r(B,,,) r(e,,,) r(e,,,))] s-‘xGr 

0 0 
lim Rx= 
u-0 0 D,,S[diag(l, 1, l)] S-‘Jz2 
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(5.14) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

with similar results for R,. 
Using (3.8) and (3.1 l), the results of this section allow the coefficient matrices Q 

and R in (3.9) to be evaluated as well as the coefftcient matrices in (4.7) as described 
by (4.6). 

6. THE EULER EQUATIONS 

Assume that ,I = k = 0. The Euler equations 

U,+AU,+BU,=O, (6.1) 

then arise as the formal limit of the Navier-Stokes equations (2.12) as the viscosity 
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P -+ 0. If CT@) denotes the solution of the Navier-Stokes equations with certain initial 
and boundary conditions, singular perturbation methods provide an important means 
of describing the sense in which U@) may be approximated by a solution U of the 
Euler equations (6.1) in regions exterior to bundary layers, shocks, etc., where 
vorticity can be generated. 

The solution U”(J) of the finite difference equations (3.9) together with (3.4) 
determines an approximate solution, say iJ(,u, dx), of U(J) if we assume that 
0’01, dx) + U(U) as Ax + 0. The construction emplyed in (3.4) is similar in viewpoint 
to one which could be employed by a singular perturbation method if one were to 
allow a much greater degree of algebraic complexity to be used in order to impose 
connection formulas between subdomains than is practical when analytic results are 
primarily desired. If, formally, lim, +,, iJ(,u, Ax) = U(Ax) it is thus reasonable to 
conjecture that U(Ax) provides an approximation to the Euler solution U as well. 

An important mathematical difference between the Navier-Stokes equations (2.12) 
and the Euler equation (6.1) lies in the formulation of boundary conditions. For 
(2.12) U(p) may be prescribed at boundaries as indicated by (2.9) while for (6.1) 
only certain combinations of U as determined by characteristics are permissible. This 
reduction of boundary conditions is, of course, a familiar feature of singular pertur- 
bation problems. 

We now propose to examine how the Euler boundary conditions result from 
U@, Ax) when p + 0 when (3.9) is employed. 

As described in Section 4, the AD1 solution method (4.3) used to solve (3.9) can 
be effectively solved by employing the block-tridiagonal system (4.7) which we now 
consider in the simplified form 

-Ja - Cry+, +b+U;-, +cU;=g,, 1 = 1) 2 )...) L - 1) (6.2) 

where U;l and JU;1 are prescribed as inflow and outflow conditions (cf. 2.16)). 
With S given by (5.1 l), let 

OX= (i S[diag(l 1 F)]S-‘sgnu)’ 1 7 x 

using (3.3) to define [Cl-‘, (5.17) may be written 

while, according to (4.6), 

(6.3) 

(6.4 ) 

lim b+=f[((I-J)+c(&,+J)[C]-‘)(1+&A)]. 
u-0 

A simple calculation yields 
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S[diag(l, 1, &.)I S-’ = (6s))’ 

i 

L% - Sl 0 (1 - II,) s2s3 

0 6s 0 9 

L-1 0 s3 - 02 1 

where 6s = s3 - sz. Thus, assuming u > 0, sgn u = 1 so that 

! 

0 0 0 0 

&3-J= (ds)-’ 
0 K- l)s, 0 (1 - ~Jw3 
o 

0 0 0 ! 

0 (L- 1) 0 (1 -us, i 

! 

0 0 0 

0, +J= (Ss)-’ 
0 (t-,+l)s,+h, 0 

0 0 26s 

0 Kx - 1) 0 

(e-7) 

(6.8) 

Suppose ,u + 0. For I = L - 1, the coefftcient Ja- in (6.2) determines the influence 
of the outflow boundary condition JUF. Using (6.5) and (6.7) there results: 

M> 1 (<,= 1) 

Here, 0, - J = 0. 

Iv< I (<,=0,-l) 

Here, rank (0, -J) = 1. 
For I= 0, the coefficient b+ . m (6.2) similarly determines the influence of the 

inflow boundary condition Vi. Now, using (6.7) and (6.8), there results 

M> 1 (&= 1) 

Rank (0, + J) = 3, 

M< 1 (&=0,-l) 

Rank (0, + J) = 2, 
i.e., rank b+ = 4 (M > 1), rank b+ = 3 (M< 1). 

Thus, the number of boundary conditions for (3.9) which are effective when p + 0 
may be summarized as 

Outflow Inflow 

M>l 0 4 

M<l 1 3. 
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(6.6) 
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These are exactly the number of boundary conditions which are appropriate for the 
Euler equations (6.1). 

Summarizing, we have described a class of compact finite difference equations 
(3.9) for treating the Navier-Stokes equations when written in form (2.12). For 
model problems in which the coefficient matrices appearing in these equations are 
symmetric and constant the resulting scheme can be shown to be convergent for all 
values of the mesh parameters IX = At/Ax, A,, = AtlAy and also to provide second- 
order accuracy. In this theory the influence of the viscosity p primarily determines the 
size of the computational subdomains within which variations in the coefficient 
matrices A and B can be regarded as small. 

An important feature of the finite difference scheme (3.9) is that the natural 
physical boundary conditions for te Navier-Stokes equations are employed; when 
p + 0 only the boundary conditions for the Euler problem influence the solution. 
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